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ABSTRACT
Given the variety of numerical errors that can occur, floating-
point programs are difficult to write, test and debug. One
common practice employed by developers without an ad-
vanced background in numerical analysis is using the high-
est available precision. While more robust, this can affect
program performance significantly. In this paper we de-
scribe a dynamic program analysis technique to find a lower
floating-point precision that can be used in any part of a
program. Precimonious performs a search on the program
variables trying to lower their precision subject to accuracy
constraints and performance goals. The tool then recom-
mends a type instantiation for these variables using less pre-
cision while producing an accurate enough answer without
causing exceptions. We evaluate Precimonious on a few
widely used functions from the GNU Scientific Library. For
most of the programs tested, Precimonious is able to re-
duce precision, which results in performance improvements
as high as 25%.

1. INTRODUCTION
Floating point arithmetic [12, 21] is used in applications

from a wide variety of domains such as high-performance
computing, graphics or finance. To minimize the chance
of problems, developers without an extensive background
in numerical analysis are likely to use the highest available
precision throughout the whole program. Even experts may
find it difficult to understand how sensitive the execution
is to rounding error and consequently default to using the
highest precision available. While more robust, this can in-
crease the program execution time, memory traffic, and en-
ergy consumption. Ideally, a programmer would use no more
precision than needed in any part of an application.

To illustrate the problem, consider the experiment per-
formed by Bailey [2] with a program that computes the arc
length of an irregular function, written in Fortran. An
implementation using double precision computes a result
whose error is about 2·10−13, compared to a second more ac-
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curate implementation using double double precision, but
is about 20x faster1. On the other hand, if double double

precision is used only for one of the variables in the program,
then the result computed is as accurate as if double double

precision had been used throughout the whole computation
while being almost as fast as the all-double implementation.
Aside from the Bailey experiment [2], many other experi-
ments [7, 8, 17] show that programs implemented in mixed
precision compute a result of the same accuracy faster than
when using solely the highest precision arithmetic.

Given the complexity of existing software frameworks, it
might be prohibitively expensive or downright impossible for
developers to manually tune their floating-point precision.
In this paper, we present a tool called Precimonious (short
for“parsimonious with precision”) to help automate this pro-
cess. Our tool has been implemented using the LLVM [16]
compiler infrastructure and it recommends a program vari-
ant that uses less precision and produces results that satisfy
accuracy and performance constraints.

Precimonious exposes to application developers an in-
terface to specify the accuracy acceptance criteria. It takes
as input a program annotated with the developer’s accuracy
expectation and it implements a dynamic program analysis
to find a program variant that uses lower precision subject
to performance constraints. Given the set of program vari-
ables and their types, the analysis performs a search trying
to reduce their precision while satisfying the constraints. To
guarantee the performance constraints, the implementation
uses either static performance models or dynamic instru-
mentation with hardware performance counters. The lat-
ter allows for easy extensibility to performance metrics such
as energy or memory traffic. The search is based on the
delta-debugging algorithm [24], which exhibits an n logn av-
erage complexity and an n2 worst-case complexity, where n
is the number of variables to be tuned. Precimonious also
requires a representative set of inputs for any given error
threshold.

We evaluated Precimonious on 8 widely used functions
from the GNU Scientific Library (GSL) [9] library and 2 pro-
grams described in [2]. For each function, we have generated
a set of inputs intended to ensure good code coverage. We
use running time as our performance metric. For most of
the test programs, Precimonious was able to detect lower
precision type configurations when varying the degree of ac-

1The author runs the experiment on an Intel-based Macin-
tosh system, uses gfortran as the compiler and the QD
package [13] to implement double double type (approxi-
mately 31 digits).
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curacy desired. In the cases in which our tool did not find
a type configuration, it was because no configuration led to
performance improvement. A type configuration is a map-
ping from each variable of interest to a type that is suggested
by our tool. By using the precision suggested by our tool,
which is found automatically, we observed speedup as high
as 25% when running the programs transformed according
to Precimonious guidance. The main contributions of this
paper are:

• We introduce a novel automated approach for recom-
mending the optimal precision choice that leads to
performance improvement in floating-point programs.
The transformed program is guaranteed to use vari-
ables of lower precision and have better performance
than the original program. To our knowledge, this is
the first attempt to address this problem.

• We implement our algorithm in a tool called Prec-
imonious and demonstrate its effectiveness by eval-
uating our tool on 8 widely used functions from the
GSL library and 2 programs described in [2]. We make
Precimonious, and all the data and results presented
in this paper publicly available under BSD license at:
https://github.com/nacuong/precimonius.

The rest of this paper is organized as follows. In Section 2,
we present a motivating example and challenges. We then
provide a detailed description of our solution in Section 3.
We give implementation details and present our experimen-
tal evaluation in Section 4. The limitations of our approach
are discussed in Section 5. Finally, we discuss related work
in Section 6 before concluding in Section 7.

2. OVERVIEW
A motivating example to show the effect of floating-point

precision on program performance has been introduced by
Bailey in [2]. The task is to estimate the arc length of the
following function over the interval (0, π).

g(x) = x+
∑

1≤k≤5

2−k sin(2kx)

The corresponding program sums
√
h2 + (g(xk + h)− g(xk))2

for xk ∈ [0, π) divided into n subintervals, where n = 1000000,
so that h = π

n
and xk = kh.

A straightforward implementation in C using long double

precision is shown in Figure 1(a). When compiled with gcc

and run on an Intel x86 system2 this program produces the
answer 5.795776322412856 (stored in variable s1 on line 27).

If the program uses double precision instead, the resulting
value would be 5.79577632241311, which is only correct up
to 11 or 12 digits after the decimal point (compared to the
result produced by the long double precision program).

Figure 1(b) shows an optimized implementation written
in C by an expert numerical analyst. From the original
eight floating-point variables appearing on the highlighted
lines, the optimized program uses long double precision
only for the variable s1 on line 17. Six other variables have

2All floating-point types used in this paper conform to the
IEEE 754-2008 standard as implemented on various x86 ar-
chitecture. In particular, long double is implemented as
the 80-bit extended precision type with 64 significant bits.

been lowered to double precision and one variable to float.
The program produces the correct answer and runs 10%
faster than the long double precision version. When re-
placing long double with even higher double double pre-
cision from the QD package [13], the same transformation
remains valid [2] and the performance improvements can be
as high as 20×. We note that double double arithmetic is
considerably slower than long double arithmetic because it
is done in software, and each operation requires a sequence
of roughly 20 instructions.

For any program, manually finding such an optimized type
configuration requires domain-specific knowledge combined
with advanced numerical analysis expertise. While probably
feasible for small programs, manual changes are prohibitive
for large code bases.

Our proposed tool automates precision tuning of floating-
point programs. We reduce the problem of precision tuning
to determining which program variables, if any, can have
their types changed to a lower precision while producing
an answer within a given error threshold. We say such an
answer is accurate enough. In addition to satisfying accuracy
requirements, the changes also have to satisfy performance
constraints, e.g. the transformed program should be at least
as fast as the original.

The main challenge for any automated approach is devis-
ing an efficient search strategy through the problem space.
In our case this is the set of program variables and their type
assignments. For the code example, there are eight floating-
point variables and we consider three different floating-point
precisions. The search space contains 38 possible combina-
tions.

2.1 Searching for Type Configurations
For a given program, there may exist one or more valid

type configurations that (1) use less floating-point preci-
sion than the original program, and (2) produce an accurate
enough answer.

Different search algorithms can be considered depending
on what valid configuration we are interested in finding. A
global minimum corresponds to the type configuration that
uses the least precision which translates to the best per-
formance improvement among all valid type configurations
for a given program. A local minimum (called 1-minimal
below) is a valid type configuration for which lowering the
precision of any one additional variable would cause the pro-
gram to compute an insufficiently precise answer or violate
the performance constraint (e.g. being slower than the orig-
inal program). We define a change set, denoted by ∆, to be
a set of variables that are mapped to the higher precision. A
change set, ∆, applied to the program under consideration
results in a program variant where only the variables in ∆
are in higher precision.

Finding a Global Minimum: Finding the global mini-
mum may require evaluation of an exponential number of
type configurations. To be precise, we may be required
to evaluate Pn configurations, where n is the number of
floating-point variables in the change set and P is the num-
ber of levels of floating-point precision. The näıve approach
which evaluates all possible type configurations by changing
one variable at a time is infeasible for large codes.

Finding a Local Minimum: If we are interested in find-
ing a 1-minimal valid configuration, a näıve approach would

https://github.com/nacuong/precimonius


1 long double fun( long double x ) {
2 int k, n = 5;
3 long double t1;
4 long double d1 = 1.0L;
5

6 t1 = x;
7 for( k = 1; k <= n; k++ ) {
8 d1 = 2.0 * d1;
9 t1 = t1 + sin (d1 * x) / d1;

10 }
11 return t1;
12 }
13

14 int main( int argc, char **argv) {
15 int i, n = 1000000;
16 long double h, t1, t2, dppi;
17 long double s1;
18

19 t1 = -1.0;
20 dppi = acos(t1);
21 s1 = 0.0;
22 t1 = 0.0;
23 h = dppi / n;
24

25 for( i = 1; i <= n; i++ ) {
26 t2 = fun (i * h);
27 s1 = s1 + sqrt (h*h + (t2 - t1)*(t2 - t1));
28 t1 = t2;
29 }
30 // final answer is stored in variable s1
31 return 0;
32 }

(a) Program in long double precision

1 double fun( double x ) {
2 int k, n = 5;
3 double t1;
4 float d1 = 1.0f;
5

6 t1 = x;
7 for( k = 1; k <= n; k++ ) {
8 d1 = 2.0 * d1;
9 t1 = t1 + sin (d1 * x) / d1;

10 }
11 return t1;
12 }
13

14 int main( int argc, char **argv) {
15 int i, n = 1000000;
16 double h, t1, t2, dppi;
17 long double s1;
18

19 t1 = -1.0;
20 dppi = acos(t1);
21 s1 = 0.0;
22 t1 = 0.0;
23 h = dppi / n;
24

25 for( i = 1; i <= n; i++ ) {
26 t2 = fun (i * h);
27 s1 = s1 + sqrt (h*h + (t2 - t1)*(t2 - t1));
28 t1 = t2;
29 }
30 // final answer is stored in variable s1
31 return 0;
32 }

(b) Tuned program using mixed precision

Figure 1: Two implementations of the arclength program using different type configurations. The programs
differ on the precision of all floating-point variables except for variable s1.

consist of removing from the change set, say ∆, one element
at a time, where ∆ initially consists of all floating-point vari-
ables in the program. This means the element removed can
be in a lower precision, while all other elements are in the
higher precision. If any of these change sets translates to a
program that passes the accuracy and performance test, we
recurs with this smaller set. Otherwise ∆ is 1-minimal, and
we can stop the search.

This algorithm is illustrated via Figure 2(a). Each rect-
angle box represents a change set under test. A gray band
denotes the set of variables that are removed from the change
set (thus can be allocated in lower precision). A cross means
the change set results in an invalid configuration (the pro-
gram either produces an insufficiently precise answer or vi-
olates a performance constraint), while a check means the
change set results in a valid configuration. In this figure, the
algorithm finds a 1-minimal valid configuration after 4 iter-
ations (the one in the dotted circle). Notice that lowering
the precision of any additional variable in this configura-
tion would make it invalid. This is illustrated in the fourth
iteration - all configurations created are invalid.

Delta-Debugging: The delta-debugging search algorithm
[24] finds a 1-minimal test case with the average running
time of O(n × log(n)). The worst case running time is still
O(n2) and it arises when each iteration results in the re-
duction of the change set by one element, which reduces to
using a näıve algorithm.

Informally, instead of making one type change at a time,
the algorithm divides the change set in two and increases
the number of subsets if progress is not possible. At a high
level, the delta-debugging algorithm consists of partioning

the change set ∆ into almost equal size subsets41,42, · · ·4n,
which are pairwise disjoint. The complement of a delta 4i
is defined as 5i = ∆ − 4i. The algorithm starts by par-
titioning ∆ into two sets (n = 2). After partitioning, the
algorithm proceeds to examine each change set in the parti-
tion and their corresponding complements. The change set
is reduced if a smaller failure inducing set is found, otherwise
the partition is refined with n = n ∗ 2.

This algorithm is illustrated via Figure 2(b). The original
change set (higher precision rectangle box) is divided into
two equal or almost equal size subsets. These two subsets
result in two invalid configurations, so the partition granu-
larity is increased to 4. The original change set is divided to
4 subsets accordingly, in which one of the subsets results in
a valid configuration. The algorithm then recurses on this
smaller subset.

3. PRECISION TUNING
We discuss the realization of our technique as a practical

and effective tool for tuning the precision of floating-point
programs, called Precimonious. Figure 3 depicts its system
architecture, which is built using the LLVM compiler infras-
tructure [16]. Precimonious receives a C program, a test
suite, and an accuracy requirement as input. It outputs a
type configuration that, when applied to the original pro-
gram, will result in a faster program that still produces an
accurate enough answer without throwing exceptions.

Precimonious consists of four main components: creat-
ing a search space for various program variants (Section 3.1),
creating candidate program variants and eventually find-
ing an optimal program variant using delta-debugging (Sec-
tion 3.2), generating program variants for different type con-



(a) Quadratic number of variants (b) Binary search on quadratic search space

Figure 2: Examples of search strategies

figurations (Section 3.3), and validating transformed pro-
grams (Section 3.4).

3.1 Creating the Search Space
The tool starts by creating a search file which consists

of all variables whose precision needs to be tuned. The
search file associates each floating-point variable with the
set of floating-point types to be explored (e.g., float, dou-

ble, and long double) for the variable. The input to this
process is the program under analysis, in the format of LLVM
bitcode. An excerpt of the search file for the arclength pro-
gram in Section 2 is given below. The configuration states
that the local variable t1 in function fun can be either of
type float, double or long double (for ease of presenta-
tion, we assume local variables in the same function have
unique names).

1 ...
2 localVar: {
3 function: fun
4 name: t1
5 type: [float, double, long double]
6 }
7 ...

In the current implementation, the search file includes the
local variables of all functions statically reachable from main.
We only include global variables that are accessed in any of
these functions. We include both scalars and arrays.

3.2 Finding an Optimal Configuration using
Delta-Debugging

We employ a modified version of the delta-debugging al-
gorithm [24] to find a type configuration which runs faster
than the input program with accuracy requirement specified.
To assess the profitability of a change, the implementation
allows using both synthetic performance models as well as
user supplied feedback such as hardware performance coun-
ters.

Synthetic Performance Models. To enable usage of per-
formance models, the tool can generate instrumentation for
basic operations. In our current prototype, we instrument
all the floating-point instructions, including loads and stores.

When each program variant is run, the dynamic count of
these operations is gathered and it can be fed into perfor-
mance models. We have experimented with several simple
models none of which provided accurate predictor results in
practice.

User Supplied Feedback. In order to accurately assess the
desired performance metric during the program execution,
the tool allows the user to provide her own instrumentation
code. The search algorithm makes decisions based on these
measurements. For all results presented in this paper, we
used a performance metric obtained using hardware timers.

Search algorithm. Given a configuration search file, our
goal is to find an optimal configuration which maps each
variable to a single type and that exhibits lower cost. Ini-
tially, each variable in the search file is associated with a
set of types. Our algorithm iteratively refines each of these
sets of types until it consists of only one type. In each it-
eration, the algorithm considers a pair of types, the highest
and second-highest precision available. It then determines
the set of variables that need to be allocated in the highest
precision. For these variables, the corresponding set of types
are refined to contain only the highest precision type. These
variables are then ignored in later iterations. For those vari-
ables that can be in the second-highest precision, the highest
precision can be removed from their set of types and they
are available as input to the next iteration.

Because our algorithm is based on delta-debugging search,
with heuristic pruning, it is efficient in practice. To bal-
ance between the searching cost and the quality of result,
we choose to search for a local minimum configuration. As
shown in Section 4, we were able to find configurations with
promising improvements on the workload considered.

Figure 4 shows our low cost configuration search algo-
rithm, entitled LCCSearch. In this algorithm, a change
set is a set of variables. The variables in the change set
must have higher precision. The algorithm outputs a mini-
mal change set, which consists of a set of variables that must
be allocated in the higher precision (all other variables of
interest can be in lower precision ) so that the transformed
program produces an accurate enough result and satisfies
performance goal.
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Procedure LCCSearch
Inputs

P : target program
∆ : change set

Outputs
A minimal change set

Algorithm

1 div = 2
2 ∆LC = ∆
3 for i in [1..div]:

4 ∆i = ∆[ (i−1)|∆|
div

. . . i|∆|
div

]
5 ∇i = ∆ \∆i

6 if accurate(P, ∆i) and cost(P, ∆i) < cost(P, ∆LC):
7 ∆LC = ∆i

8 div = 2
9 if accurate(P, ∇i) and cost(P, ∇i) < cost(P, ∆LC):

10 ∆LC = ∇i
11 div = div−1
12 if ∆LC 6= ∆:
13 ∆ = ∆LC

14 else:
15 if div > |∆|:
16 return ∆
17 else:
18 div = 2 ∗ div
19 goto 3

Figure 4: Lowest Cost Configuration Search Algo-
rithm

The algorithm starts by dividing the change set ∆ into
two subsets of equal or almost equal size ∆1 and ∆2. It also
creates the complement set of these subsets ∇1 = ∆ \ ∆1

and ∇2 = ∆ \∆2 (line 4-5). For each of these subsets, the
algorithm creates the corresponding program variant (Sec-
tion 3.3), checks whether the program variant produces an
accurate enough result (Section 3.4) and records the one
that has the lowest cost number (line 6-11). The function
accurate(P, ∆) transforms the program P according to ∆
and returns a boolean value indicating whether the trans-
formed program is accurate enough. Similarly, the function
cost(P, ∆) transforms the program P according to ∆ and
returns the cost of the transformed program. If a change set

with the lowest cost exists, the algorithm recurses with that
smaller change set (line 12-13 and 19); otherwise it restarts
the algorithm with a finer-grained partition (line 17-19). In
the special case where the granularity can no longer be in-
creased, the algorithm returns the current ∆, which is a local
minimum configuration (line 15-16).

3.3 Generating Program Variants
We automatically generate program variants that reflect

the type configurations produced by our LCCSearch algo-
rithm. We compile the original C program3 to LLVM interme-
diate representation (LLVM IR) and apply a set of program
transformations to reflect a given set of variable type assign-
ments. We support scalar and array types. We currently do
not support structures. The result of the transformation is
a binary file (LLVM bitcode file) of the program whose vari-
able types have been changed accordingly. The following
subsections describe our program transformations given our
intermediate representation of choice. Note that most LLVM

instructions, including all arithmetic and logical operations,
are in three-address form. An instruction in three-address
form takes one or two operands, and produces a single re-
sult. Thus, our transformations are directly applicable to
any other three-address form intermediate representation.

3.3.1 LLVM Intermediate Representation
LLVM (Low Level Virtual Machine) is a compiler infras-

tructure for program analysis and transformation. LLVM sup-
ports a language-independent instruction set and type sys-
tem. LLVM has a static single assignment (SSA) based inter-
mediate representation, meaning that each variable (called a
typed register) is assigned only once. Instructions can only
produce first-class types. LLVM defines eight such types: in-
teger, floating point, pointer, vector, structure, array, label,
and metadata.

Figure 5(a) shows excerpts of the bitcode file produced for
the function fun from the arclength program of Figure 1(a).
These excerpts correspond to allocating space for local vari-
ables x, t1, and d1, and the instructions corresponding to
the statements on lines 6, 9 and 11 (all statements involv-
ing variable t1). The instruction alloca allocates memory
in the stack. Other instructions include load to read from
memory, store to store in memory, fpext and fptrunc to

3Because we are using the LLVM IR, we can also transform
programs written in other languages for which an LLVM front-
end is available (e.g., Fortran). However so far we have only
transformed C programs.



cast floating-point numbers, and floating-point arithmetic
operations such as fadd, fsub, fmul and fdiv. As men-
tioned earlier, each of these instructions is in three-address
form, with no more than one operator on the right side of
each assignment.

3.3.2 Program Transformations
We apply program transformations to change the type of

variables according to the type configuration under consid-
eration. We accomplish this by modifying the bitcode of the
original program. For example, consider a type configura-
tion that maps all floating-point variables to their original
types except for variable t1, which is now suggested to be
double. Figure 5(b) shows the transformed bitcode for the
bitcode excerpts of Figure 5(a).

First, we replace alloca instructions to allocate the cor-
rect amount of memory for the variables whose type is to
be changed. In this example, we allocate space for a double

instead of a long double for variable t1. Second, we iter-
ate through the uses of each of these instructions to identify
other instructions that may need to be transformed. In this
case, there are 5 instructions that use t1 as an operand.
These instructions are highlighted (in addition to the initial
alloca instruction) in Figure 5(a). We define a set of pro-
gram transformation rules to be applied depending on the
instruction to be transformed. Table 1 shows a few sample
transformation rules. For each transformed instruction, we
iterate through its uses to continue to propagate the changes.

For example, consider the transformation of the second
highlighted store instruction in Figure 5(a). This instruc-
tion is storing the result of an addition (register %19) into t1.
The rule Store-2 of Table 1 applies in this case because the
target and the source of the store instruction have different
types. The rule says that, in this case, the target should
be downcast before it can be stored in the new variable t1.
Thus, the transformed bitcode, shown in Figure 5(b), in-
cludes an additional fptrunc instruction right before the
new transformed store instruction. Note that in the case
of arithmetic operation instructions, we run a final pass to
make sure each operation is performed in the precision of its
highest-precision operand.

The resulting bitcode file verifies and can be run using lli,
which directly executes programs in LLVM bitcode format. It
is also possible to compile the bitcode to assembly, and use
any back-end compiler such as gcc.

3.4 Logging and Checking Results
To determine whether a type configuration is valid, we run

the transformed program and check for two criteria: correct-
ness and performance.

First, we compare the result produced by the transformed
program against the expected result. The expected result is
the value (or values) obtained by running the original pro-
gram on a given set of inputs. We take into account the
error threshold provided by the programmer when compar-
ing the results. Second, we measure running times for the
original and transformed programs. Then, we determine
whether the transformed program is at least as fast as the
original program. This information is provided as feedback
to our LCCSearch algorithm, which determines the new
type configuration to be produced.

4. EXPERIMENTAL EVALUATION

As noted earlier, our implementation uses the LLVM com-
piler infrastructure [16]. We have written several LLVM passes
in C++ to create search files, and to transform programs to
have a given type configuration. We have implemented our
LLCSearch algorithm in Python. Our result logger, re-
sult checker, and floating-point number generator have been
implemented in C.

We present results for 8 programs that use the GNU Sci-
entific Library (GSL) [9], the arclength program described
throughout the paper, and a program that implements the
Simpson’s rule. We use Clang 3.0 to produce LLVM bitcode
and a python-based wrapper [19] to build whole-program (or
whole-library) LLVM bitcode files. We ran our experiments
on an Intel Core i7-3770K 3.5Ghz Linux machine with 32GB
RAM.

4.1 Experiment Setup
Precimonious can be used by developers with different

levels of expertise in numerical analysis. In general, usage
scenarios differ on the program inputs and threshold values
selected for the analysis. A more experienced user might
be more selective on the program inputs and threshold val-
ues to use. In the experiments presented in this section, we
illustrate how a näıve user could employ our tool. We as-
sume that the source code of the program is available, and
the user knows which variable(s) will eventually store the
result(s) produced by the program. We also assume that a
test input set is not available.

For each program, we generate 1000 random floating-point
inputs, and classify these inputs based on code coverage. We
construct a representative test input set by selecting one in-
put from each resulting group, thus attempting to maximize
code coverage. Note that this test input set can be replaced
or augmented by an existing input set. We annotate each
program to log and check the results produced. This usu-
ally requires adding a few function calls to our logger and
checker routines.

In our experiments, we use 4 different error threshold val-
ues, which indicate the number of accuracy digits required
in each experiment. The non-expert user can compare the
type configurations suggested by our tool for the various
threshold values, and evaluate the trade-off between accu-
racy and speedup to make a decision. In general, the user
can specify any threshold values of interest. Finally, we run
each program thousands of times (or millions depending on
their size) to ensure that the program runs long enough to
obtain more reliable performance measurements.

4.2 Experiment Results
We ran our precision-tuning analysis on 8 programs that

use the GSL library and 2 other programs (arclength and
simpsons). Table 2 shows the number of variables in float

(F), double (D) and long double (LD) precision in the orig-
inal programs, and the type configurations suggested by our
tool for each threshold value (10−4, 10−6, 10−8, and 10−10).
Each error threshold indicates the number of accuracy dig-
its. For example, 10−4 roughly means that the result is
required to be correct up to 4 digits. The table also shows
the number of configurations explored in each case by our
LLCSearch algorithm, and its performance.

For example, our analysis took as little as 1 minute 3 sec-
onds to find that we can lower the precision of all the vari-
ables in the program roots from double to float when the



define x86_fp80 @fun(x86_fp80) nounwind uwtable ssp {
// allocating space for local variables
%x = alloca x86_fp80, align 16
%t1 = alloca x86_fp80, align 16
%d1 = alloca x86_fp80, align 16
// instructions to store initial values
...
// t1 = x; (line 6)
%2 = load x86_fp80* %x, align 16
store x86_fp80 %2, x86_fp80* %t1, align 16
...
// t1 = t1 + sin(d1 * x) / d1; (line 9)
%10 = load x86_fp80* %t1, align 16
%11 = load x86_fp80* %d1, align 16
%12 = load x86_fp80* %x, align 16
%13 = fmul x86_fp80 %11, %12
%14 = fptrunc x86_fp80 %13 to double
%15 = call double @sin(double %14) nounwind readnone
%16 = fpext double %15 to x86_fp80
%17 = load x86_fp80* %d1, align 16
%18 = fdiv x86_fp80 %16, %17
%19 = fadd x86_fp80 %10, %18
store x86_fp80 %19, x86_fp80* %t1, align 16
...
// return t1; (line 11)
%24 = load x86_fp80* %t1, align 16
ret x86_fp80 %24

}

(a) LLVM bitcode for original function

define x86_fp80 @fun(x86_fp80) nounwind uwtable ssp {
// allocating space for local variables
%x = alloca x86_fp80, align 16
%t1 = alloca double, align 8
%d1 = alloca x86_fp80, align 16
// instructions to store initial values
...
// t1 = x; (line 6)
%2 = load x86_fp80* %x, align 16
%3 = fptrunc x86_fp80 %2 to double
store double %3, double* %t1, align 8
...
// t1 = t1 + sin(d1 * x) / d1; (line 9)
%11 = load double* %t1, align 8
%12 = fpext double %11 to x86_fp80
%13 = load x86_fp80* %d1, align 16
%14 = load x86_fp80* %x, align 16
%15 = fmul x86_fp80 %13, %14
%16 = fptrunc x86_fp80 %15 to double
%17 = call double @sin(double %16) nounwind readnone
%18 = fpext double %17 to x86_fp80
%19 = load x86_fp80* %d1, align 16
%20 = fdiv x86_fp80 %18, %19
%21 = fadd x86_fp80 %12, %20
%22 = fptrunc x86_fp80 %21 to double
store double %22, double* %t1, align 8
...
// return t1; (line 11)
%27 = load double* %t1, align 8
%28 = fpext double %27 to x86_fp80
ret x86_fp80 %28

}

(b) Transformed LLVM bitcode

Figure 5: LLVM bitcode excerpts of function fun from the arclength program of Figure 1

threshold value is 10−4. The running time for the smaller
program arclength was under a minute when using the
same threshold value. Note that even the simple experiment
of lowering the precision of all the variables in a program
would be tedious and time consuming if done by hand. Our
tool finds all these suggested type configurations without
any manual intervention, and provides a listing of the new
type assignment (if any) for each floating-point variable in
the program. If desired, the user can run the modified LLVM

bitcode of the program as well.
Our analysis runs in under 50 minutes for 38 out of the

40 experiments from Table 2 (10 programs and 4 different
threshold values). The most expensive analysis was for the
program fft with threshold 10−10, which took 116 minutes
51 seconds. In this experiment, 663 type configurations were
explored. Note that in this case there are 222 or 4, 194, 304
possible program variants.

Table 3 shows the speedup with respect to the original
programs. Precimonious finds at least one lower-precision
type configuration that results in performance improvement
for 7 out of 10 programs. The most significant improvement
was observed for program blas with a speedup of 24.69%
when the error threshold was set to 10−4 or 10−6, followed
by 15.07% for sum, and 13.05% for fft.

In general, we would expect that as the error threshold be-
comes larger, more program variables could be changed to a
lower precision while improving performance. However, this
is not necessarily true when the resulting configuration uses
mixed precision. In some cases, the resulting type configura-
tion might introduce many more casting operations, making
the new program to actually run slower. Because our search
constraints for valid configurations are both correctness and
performance, there may be cases when a smaller threshold

might prevent certain variables from being lowered, which
might have caused the program to become more expensive
due to castings, for example. Thus, a smaller threshold in
some cases can lead to finding a type configuration that re-
sults in better program performance than a larger threshold.

For example, Precimonious finds a type configuration
that lowers 18 out of 19 floating-point variables for the pro-
gram roots with threshold 10−6. However, when we use a
smaller error threshold of 10−8 or 10−10, a different type
configuration is found (also lowering 18 variables). In this
case, the smaller threshold rules out invalid configurations
that would have been valid for a larger threshold but would
have had less performance improvement.

Precimonious does not find a valid type configuration for
any of the selected error thresholds for programs bessel,
gaussian, and polyroots. In these cases, there are type
configurations that use less precision while producing an ac-
curate enough answer given those thresholds, however none
of these type configurations lead to performance improve-
ment. At least for bessel, it is well-known that there exist
better and more efficient algorithms that could be used if we
know beforehand that the computation can be performed in
single precision. In the future, Precimonious could be en-
hanced to incorporate this kind of domain knowledge.

Table 4 gives more details for the set of results correspond-
ing to threshold value 10−6. The table shows a comparison
between the number of floating-point instructions executed
by the original program and the suggested tuned program.
In particular, we show the number of float, double, and
long double loads, stores, arithmetic operations, compari-
son operations and casting instructions. We have omitted
the programs for which a type configuration leading to bet-
ter performance was not found. In general, we find that it



Table 1: Sample program transformation rules. Let Γ = {x : τ | x ∈ V ∪ R and τ ∈ T } be a finite set of type
assignments for variables and registers. Γ is initialized with the type information given in the configuration
file. Registers are initially untyped.

Name Program Transformation Type Rule Description

LOAD r = v =⇒ r = v
Γ ` v : τ

[Load]
Γ ` r = v : τ

If Γ ` v : τ then Γ ` r : τ

STORE v = r =⇒ v = r
Γ ` r : τ

[Store-1]
Γ ` v = r : τ

Γ ` r : τ and Γ ` v : τ

v = r1 =⇒ r2 = (τ)r1

v = r2

Γ ` r : τ ′

Γ ` r1 = (τ)r : τ
[Store-2]

Γ ` v = r1 : τ

If Γ ` v : τ and Γ ` r : τ ′

then cast r to type τ before
the store

is difficult to determine how different kinds of instructions
contribute to improving or decreasing program performance.

Based on our results, we classify the programs under anal-
ysis into three categories: mixed precision, double precision
and single precision. The following subsections explain each
category and give some examples.

Mixed Precision: We find that for our test input setcer-
tain inputs, the programs simpsons, arclength, roots, root-
newt, and sum indeed can use mixed precision to produce
an accurate enough answer while improving program per-
formance. For example, program sum takes the terms of a
series and computes the extrapolated limit of the series using
a Levin u-transform. There are 31 floating-point variables in
this program. We find that we can lower the precision of 22
of these variables while improving program performance by
15.07%. Another example of mixed precision is illustrated
by the funarc program described in Section 2, which led to
a performance improvement of 9.84% to 11.16%.

Single Precision: It is possible for Precimonious to de-
termine that all variables in a program can be single preci-
sion. However, it is important to be aware that for certain
mathematical functions, simply changing the precision of all
variables might not be the best alternative to achieve better
performance. Often, different algorithms are used for single
precision, which can have a better performance. This is the
case for programs such as bessel and gaussian (for which
lowering the precision made the program slower, thus we did
not suggest any type configuration). In this situation, the
user might want to switch algorithms rather than lowering
the precision of the double-precision algorithm. Precimo-
nious can still be helpful to indicate that all variables can be
single precision, and hint the user to look for single-precision
implementations of a given function. In the future, Prec-
imonious could be enhanced to switch implementations if
sufficient domain-specific information is available.

Double Precision: Precimonious can also help to deter-
mine whether a given program has already an optimal preci-
sion, preventing the user from making any program changes.
The program polyroots illustrates this scenario. Our tool
correctly finds that none of the variables involved in the
computation can be changed to a lower precision.

5. LIMITATION
We note that our tool does not attempt to prove error

Table 3: Speedup observed after precision tuning

Threshold

Program 10−4 10−6 10−8 10−10

simpsons 9.99% 9.99% 9.99% 9.99%
arclength 9.84% 11.16% 10.35% 10.35%
bessel 0.00% 0.00% 0.00% 0.00%
gaussian 0.00% 0.00% 0.00% 0.00%
roots 7.09% 4.51% 6.79% 6.79%
polyroots 0.00% 0.00% 0.00% 0.00%
rootnewt 0.40% 4.45% 1.16% 0.47%
sum 15.07% 0.00% 0.00% 0.00%
fft 13.05% 13.05% 0.00% 0.00%
blas 24.69% 24.69% 0.00% 0.00%

bounds, or guarantee accurate answers for all possible in-
puts. This is a different and harder problem. Instead, we
rely on the user to provide a set of representative inputs to
make our decisions. If the user attempts to use our gener-
ated code on a much worse conditioned input, then we can
make no guarantees; indeed even using the highest available
precision everywhere may give the wrong answer in this case.

Furthermore, the transformation that Precimonious cur-
rently performs is equivalent to the transformation of the
program declaration at the source code level. It might be
desirable to be able to change precision of intermediate vari-
ables introduced dynamically during execution, e.g. the
same variable at different loop iterations can have differ-
ent precision. This is doable at the LLVM bitcode level and
subject to future work.

Finally, our evaluation involves two validity threats that
we try to mitigate. Firstly, the sample of 10 programs in
this study may be too small to yield statistically significant
results. To reduce this threat, we select 8 programs from the
widely-used and mature GSL library. The fact that we can
still optimize these programs shows promise that developers
can use our tool to optimize their early-developed and non-
optimized programs. Secondly we may make some mistakes
when mapping the type configuration found to the source
code by hand, which might affect the performance speedup
measurement. We performed a sanity check by comparing
the numbers of load, store and arithmetic operation instruc-
tions in different level of precision between the program pro-
duced by Precimonious and the program tuned by hand,
and made sure that these numbers matched.



Table 2: Performance analysis. The column Original gives the number of floating-point variables (float F,
double D, and long double LD) in the original program. For each selected threshold value, we give the type
configuration (in number of variables per precision) found by our algorithm. #Config gives the total number
of configurations explored by our LCCSearch algorithm. The running time of the analysis is given in (mm:ss).

Original Threshold 10−4 Threshold 10−6

Program F D LD F D LD # Config mm:ss F D LD # Config mm:ss

simpsons 0 6 3 7 2 0 26 1:27 7 2 0 26 1:28
arclength 0 0 9 7 2 0 24 0:54 3 6 0 92 3:03
bessel 0 18 0 0 18 0 130 37:11 0 18 0 96 26:20
gaussian 0 52 0 0 52 0 201 16:12 0 52 0 161 12:29
roots 0 19 0 19 0 0 3 1:03 18 1 0 15 4:36
polyroots 0 28 0 0 28 0 336 43:17 0 28 0 161 21:42
rootnewt 0 12 0 8 4 0 61 16:56 5 7 0 25 6:08
sum 0 31 0 22 9 0 325 28:14 0 31 0 267 24:50
fft 0 22 0 22 0 0 3 1:16 22 0 0 3 1:17
blas 0 17 0 17 0 0 3 1:06 17 0 0 3 1:26

Original Threshold 10−8 Threshold 10−10

Program F D LD F D LD # Config mm:ss F D LD # Config mm:ss

simpsons 0 6 3 7 2 0 34 1:55 7 2 0 34 2:23
arclength 0 0 9 2 7 0 90 3:09 2 7 0 90 2:53
bessel 0 18 0 0 18 0 10 3:14 0 18 0 108 32:07
gaussian 0 52 0 0 52 0 1219 79:02 0 52 0 1435 86:32
roots 0 19 0 18 1 0 71 12:24 18 1 0 32 7:03
polyroots 0 28 0 0 28 0 244 28:50 0 28 0 302 31:31
rootnewt 0 12 0 7 5 0 57 9:48 7 5 0 23 5:32
sum 0 31 0 0 31 0 193 19:34 0 31 0 179 16:32
fft 0 22 0 0 22 0 423 78:10 0 22 0 663 116:51
blas 0 17 0 0 17 0 105 23:20 0 17 0 105 23:20

6. RELATED WORK
Our approach considers the problem of automatically find-

ing the lowest precision that can be safely used in each
part of a program. In recent work developed concurrently
with our own, Lam et al. proposes a framework for au-
tomatically finding mixed-precision floating-point compu-
tation [15]. This work appears to be the most similar to
ours. Their approach attempts to find double precision in-
structions that can be safely performed using single preci-
sion. They propose a brute-force based search using dynamic
range analysis as heuristic. Their goal is to maximize the
number of instructions that can be replaced to single preci-
sion.

Precimonious uses a much more effective delta-debugging
based search that can scale to a search space of at least 250

configurations. Furthermore, it uses a more general perfor-
mance model as the metric for searching. Our performance
model can also be used to guide the search to maximize the
number of instructions that can be replaced to single pre-
cision. However, this metric does not guarantee that the
transformed program has better performance. Instead, we
use running time as performance model and attempt to find
a new program that runs faster than the original program.
Finally, Lam et al. do not discuss the effectiveness of their
tool in practice as we did in Section 4.

FloatWatch is a dynamic execution profiling tool for float-
ing point programs which is designed to identify instructions
that can be computed in a lower precision [6]. It works by
first computing the overall range of values for each instruc-
tion of interest. Using this information, the tool recom-
mends to use less precision if possible. Darulova and Kuncak
also implemented a dynamic range analysis feature for the
Scala language [10]. The approach uses interval and affine

forms to represent the input, and examine how errors are
magnified by each operation during execution. Their work
might also be used for precision tuning purposes, by first
computing a dynamic range for each instructions of inter-
est and then tuning the precision based on the computed
range, similar to FloatWatch. However, range analysis of-
ten incurs overestimates too large to be useful for precision
tuning analysis.

Our work is also related to a large body of work on accu-
racy analysis. Benz et al. [4] presented a dynamic analysis
approach for finding accuracy problems. Their approach
computes every floating-point instructions side by side in
higher precision. The higher precision computation is stored
in a shadow value. If the differences between the original
value and the shadow value become too large, their tool re-
ports a potential accuracy problem. FPInst is another tool
that computes floating point errors for the purpose for de-
tecting accuracy problem [1]. It also computes a shadow
value side by side, but it stores an absolute error in double
precision instead. Lam et al. [14] propose a tool for detect-
ing cancellation. Cancellation is detected by first computing
the exponent of the result and the operands. If the expo-
nent of the result is less than the maximum of those of the
two operands, an cancellation has occurred. Precimonious
can complement accuracy analysis for debugging purposes
in the following way. It can attempt to tune the set of po-
tentially error-generating floating-point instructions to have
higher precision until the accuracy problem goes away. The
cost model could be changed to favor a configuration that
requires the fewest changes.

Autotuning of codes to improve performance is a very
large area of research, just a few citations being [5, 11, 18,
22, 23]. This previous work has however not tried to tune



Table 4: Number of instructions executed when the error threshold is 10−6

roots rootnewt fft

Operations original tuned original tuned original tuned

Loads F 0 1321 0 217 0 9106
D 7786 6465 2506 2289 9106 0
LD 0 0 0 0 0 0

Stores F 0 641 0 148 0 4442
D 3803 3162 1303 1155 4442 0
LD 0 0 0 0 0 0

Arith Ops F 0 217 0 0 0 4678
D 2209 1992 898 898 4727 49
LD 0 0 0 0 0 0

Comp Ops F 0 78 0 0 0 0
D 1593 1514 335 335 0 0
LD 0 0 0 0 0 0

Castings Trunc 0 207 0 69 0 28
Ext 0 808 0 217 0 28

blas arclength simpsons

Operations original tuned original tuned original tuned

Loads F 0 37805 0 15000001 0 9000015
D 37805 0 0 21000001 7000006 7000008
LD 0 0 36000002 0 9000001 0

Stores F 13004 0 0 6000002 0 6000013
D 13004 0 0 11000004 6000006 4000007
LD 0 0 16000006 0 4000004 0

Arith Ops F 0 24600 0 1 0 2000004
D 24600 0 0 27000000 4000002 7000008
LD 0 0 27000001 0 5000000 0

Comp Ops F 0 0 0 0 0 0
D 603 603 0 0 0 1000001
LD 0 0 0 0 1000000 0

Castings Trunc 0 0 6000001 5000000 2000001 6000010
Ext 0 603 6000001 16000001 3000003 7000011

floating-point precision in the way this work does.

7. CONCLUSION
We have presented the first automated tuning algorithm

for floating-point precision that identifies parts of the pro-
gram that can be performed in lower precision. Our algo-
rithm attempts to find a program that produces an accu-
rate enough answer without exceptions and runs faster than
the original program. We implemented our algorithm in an
efficient and publicly available tool called Precimonious.
Initial evaluation on 8 programs using the GSL library shows
encouraging results: we are able to discover precision con-
figurations that result in performance improvements as high
as 25%.

In the future we would like to apply our technique to a
wider range of programs to gain better statistical results.
We would also like to combine our tool with test generation
techniques such as concolic testing [3, 20], so that, in the
absence of a test suite, we can generate a more represen-
tative input set, making our tuning recommendations more
stable across different inputs. Finally, we can generalize our
technique to support not only variable precision but also op-
eration, language construct and algorithm choices, which is
also an interesting future research direction.

The Precimonious source code, and all the data and re-
sults presented in this paper are available under BSD license
at https://github.com/nacuong/precimonius.
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[18] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua,
M. Veloso, B. Singer, J. Xiong, F. Franchetti,
A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and
N. Rizzolo. SPIRAL: Code generation for DSP
transforms. Proceedings of the IEEE, special issue on
“Program Generation, Optimization, and Adaptation”,
93(2):232– 275, 2005.

[19] T. Ravitch. LLVM Whole-Program Wrapper
@ONLINE, Mar. 2011. URL
https://github.com/travitch/whole-program-llvm.

[20] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic
unit testing engine for C. In 5th joint meeting of the
European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE’05), pages 263–272. ACM,
2005.

[21] I. C. Society. IEEE Standard for Floating-Point
Arithmetic, IEEE Standard 754-2008, Aug. 2008.
URL http://ieeexplore.ieee.org/xpl/freeabs_

all.jsp?arnumber=4610935.

[22] R. Vuduc, J. Demmel, and K. Yelick. OSKI: A library
of automatically tuned sparse matrix kernels. In Proc.
of SciDAC 2005, J. of Physics: Conference Series.
Institute of Physics Publishing, June 2005.

[23] C. Whaley. Automatically Tuned Linear Algebra
Software (ATLAS). math-atlas.sourceforge.net, 2012.

[24] A. Zeller and R. Hildebrandt. Simplifying and
isolating failure-inducing input. IEEE Trans. Software
Eng., 28(2):183–200, 2002.

http://doi.acm.org/10.1145/1377596.1377597
http://www.gnu.org/software/gsl/
http://dl.acm.org/citation.cfm?id=872021.872445
http://dl.acm.org/citation.cfm?id=872021.872445
http://doi.acm.org/10.1145/567806.567808
https://github.com/travitch/whole-program-llvm
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4610935
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4610935

	Introduction
	Overview
	Searching for Type Configurations

	Precision Tuning
	Creating the Search Space
	Finding an Optimal Configuration using Delta-Debugging
	Generating Program Variants
	LLVM Intermediate Representation
	Program Transformations

	Logging and Checking Results

	Experimental Evaluation
	Experiment Setup
	Experiment Results

	Limitation
	Related Work
	Conclusion
	References

